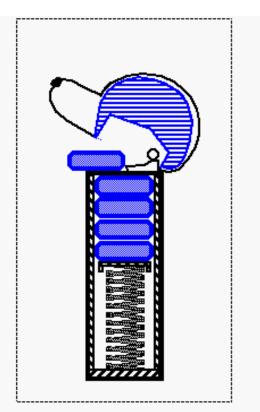
Stacks, Queues, & Lists

Amortized analysis

Trees

ELEMENTARY DATA STR



THE STACK ADT (§2.1.1)

- The Stack ADT (Abstract Data Type) stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Think of a spring-loaded plate dispenser
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element

- Auxiliary stack operations:
- object top(): returns the last inserted element without removing it integer size(): returns the
 - number of elements stored
 - boolean isEmpty(): indicates whether no elements are stored

APPLICATIONS OF STACKS

- Direct applications
 - Page-visited history in a Web browser
 - Undo sequence in a text editor
 - Chain of method calls in the Java Virtual Machine or C++ runtime environment
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures

METHOD STACK IN THE JVM

- The Java Virtual Machine (JVM) keeps track of the chain of active methods with a stack
- When a method is called, the JVM pushes on the stack a frame containing
 - Local variables and return value
 - Program counter, keeping track of the statement being executed
- When a method ends, its frame is popped from the stack and control is passed to the method on top of the stack

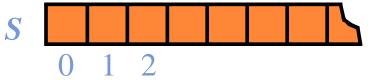
```
main() {
  int i = 5;
  foo(i);
foo(int j) {
  int k;
  k = j+1;
  bar(k);
bar(int m) {
```

```
bar
 PC = 1
 m = 6
foo
 PC = 3
 i = 5
 k = 6
main
 PC = 2
```

ARRAY-BASED STACK (§2.1.1)

- A simple way of implementing the Stack ADT uses an array
- We add elements from left to right
- A variable t keeps track of the index of the top element (size is t+1)

```
Algorithm pop():
  if is Empty() then
    throw EmptyStackException
  else
                                           Elementary Data Structures
    t \leftarrow t-1
    return S[t+1]
Algorithm push(o)
  if t = S.length - 1 then
    throw FullStackException
   else
    t \leftarrow t + 1
    S[t] \leftarrow o
```



PERFORMANCE AND LIMITATIONS

Performance

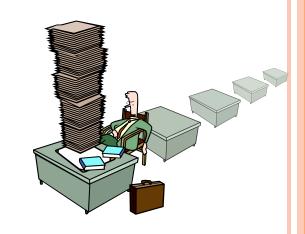
- Let n be the number of elements in the stack
- The space used is O(n)
- Each operation runs in time O(1)

Limitations

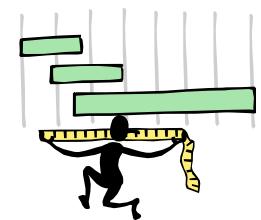
- The maximum size of the stack must be defined a priori and cannot be changed
- Trying to push a new element into a full stack causes an implementation-specific exception

GROWABLE ARRAY-BASED STACK (§1.5)

- In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one
- O How large should the new array be?
 - incremental strategy: increase the size by a constant c
 - doubling strategy: double the size



```
Algorithm push(o)
if t = S.length - 1 then
A \leftarrow \text{new array of}
\text{Size} \dots
\text{for } i \leftarrow 0 \text{ to } t \text{ do}
A[i] \leftarrow S[i]
S \leftarrow A
t \leftarrow t + 1
S[t] \leftarrow o
```



- We compare the incremental strategy and the doubling strategy by analyzing the total time *T(n)* needed to perform a series of *n* push operations
- We assume that we start with an empty stack represented by an array of size 1
- We call **amortized time** of a push operation the average time taken by a push over the series of operations, i.e., T(n)/n

Elementary Data Structures

ANALYSIS OF THE INCREMENTAL STRATEGY

- We replace the array k = n/c times
- The total time T(n) of a series of n push operations is proportional to

$$n + c + 2c + 3c + 4c + ... + kc =$$
 $n + c(1 + 2 + 3 + ... + k) =$
 $n + ck(k + 1)/2$

- Since c is a constant, T(n) is $O(n + k^2)$, i.e., $O(n^2)$
- \circ The amortized time of a push operation is $O(\mu)$

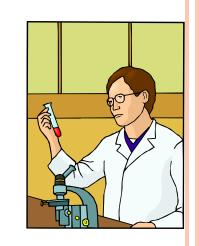
DIRECT ANALYSIS OF THE DOUBLING STRATEGY

- We replace the array $k = \log_2 n$ times
- The total time T(n) of a series of n push operations is proportional to

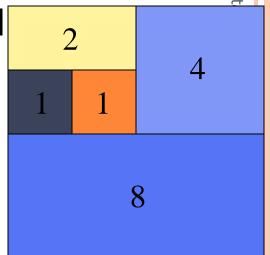
$$n + 1 + 2 + 4 + 8 + ... + 2^{k} =$$

 $n + 2^{k+1} - 1 = 2n - 1$

- $\circ T(n)$ is O(n)
- The amortized time of a push operation is O(1)



geometric series

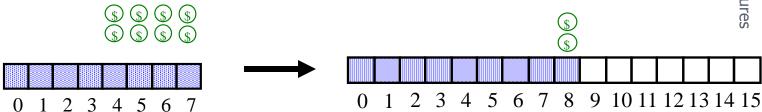


Accounting Method Analysis of the Doubling Strategy

- Amortization: to pay of gradually by making periodic payments
- Rather than focusing on each operation separately, it consider the running time of a series of these operations
- We view a computer as a coin-operated device requiring 1 cyber-dollar for a constant amount of computing.
 - We set up a scheme for charging operations. This is known as an amortization scheme.
 - The scheme must give us always enough money to pay for the actual cost of the operation.
 - The total cost of the series of operations is no more than the total amount charged.
 - (amortized time) ≤ (total \$ charged) / (# operations)

AMORTIZATION SCHEME FOR THE DOUBLING STRATEGY

- Consider again the k phases, where each phase consisting of twice as many pushes as the one before.
 - It costs one cyber-dollar for to push one element, excluding the growth of the array.
 - Growing the array from k to 2k costs k cyber-dollars for copying elements.
- At the end of a phase we must have saved enough to pay for the arraygrowing push of the next phase.
- At the end of phase *i* we want to have saved *i* cyber-dollars, to pay for the array growth for the beginning of the next phase.



- We charge \$3 for a push. The \$2 saved for a regular push are "stored" in the second half of the array. Thus, we will have 2(i/2)=i cyber-dollars saved at then end of phase i.
- Therefore, each push runs in O(1) amortized time; n pushes run in O(n) time.

Elementary Data Structures

THE QUEUE ADT (§2.1.2)

- The Queue ADT stores arbitrary objects
- Insertions and deletions follow the first-in first-out scheme
- Insertions are at the rear of the queue and removals are at the front of the queue
- Main queue operations:
 - enqueue(object): inserts an element at the end of the queue
 - object dequeue(): removes and returns the element at the front of the queue

- Auxiliary queue operations:
 - object front(): returns the element at the front without removing it
 - integer size(): returns the number of elements stored
 - boolean isEmpty(): indicates
 whether no elements are
 stored

Exceptions

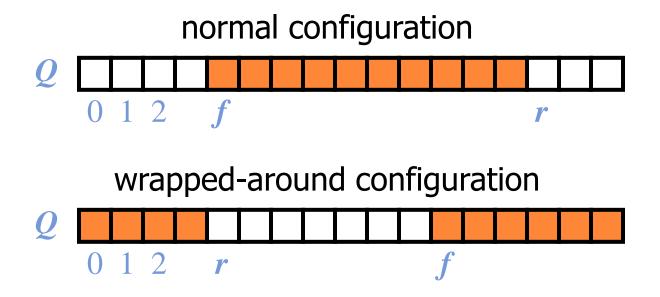
 Attempting the execution of dequeue or front on an empty queue throws an EmptyQueueException

APPLICATIONS OF QUEUES

- Direct applications
 - Waiting lines
 - Access to shared resources (e.g., printer)
 - Multiprogramming
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures

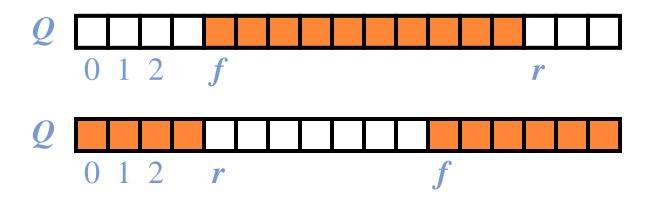
ARRAY-BASED QUEUE

- Use an array of size N in a circular fashion
- Two variables keep track of the front and rear
 - f index of the front element
 - r index immediately past the rear element
- Array location r is kept empty



 We use the modulo operator (remainder of division) Algorithm size()return $(N - f + r) \mod N$

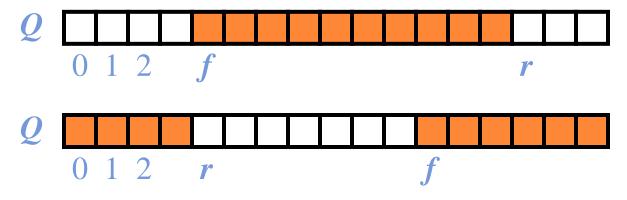
Algorithm isEmpty()return (f = r) Elementary Data Structures



QUEUE OPERATIONS (CONT.)

- Operation enqueue throws an exception if the array is full
- This exception is implementationdependent

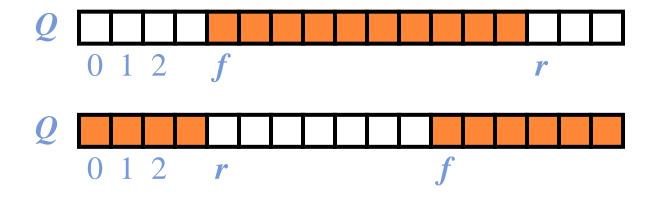
```
Algorithm enqueue(o)
if size() = N - 1 then
throw FullQueueException
else
Q[r] \leftarrow o
r \leftarrow (r + 1) \bmod N
```



QUEUE OPERATIONS (CONT.)

- Operation dequeue throws an exception if the queue is empty
- This exception is specified in the queue ADT

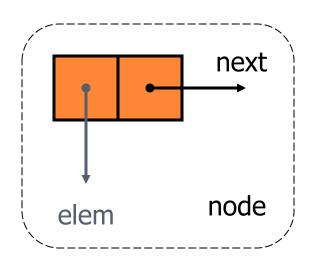
```
Algorithm dequeue()
if isEmpty() then
throw EmptyQueueException
else
o \leftarrow Q[f]
f \leftarrow (f+1) \mod N
return o
```



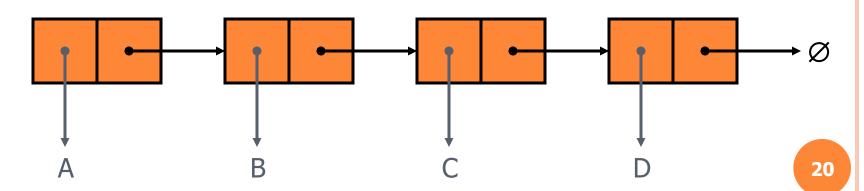
GROWABLE ARRAY-BASED QUEUE

- In an enqueue operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one
- Similar to what we did for an array-based stack
- The enqueue operation has amortized running time
 - O(n) with the incremental strategy
 - *O*(1) with the doubling strategy

- A singly linked list is a concrete data structure consisting of a sequence of nodes
- Each node stores
 - element
 - link to the next node



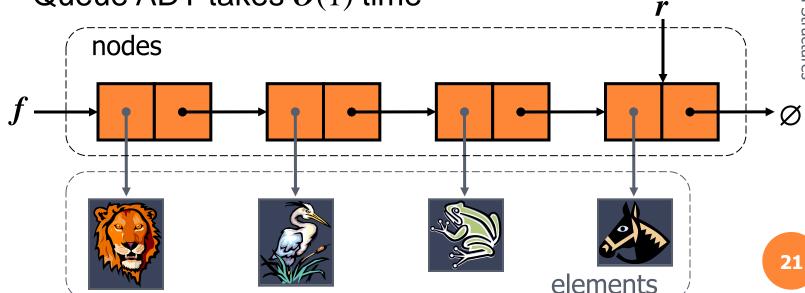
Elementary Data Structures



QUEUE WITH A SINGLY LINKED LIST

- We can implement a queue with a singly linked list
 - The front element is stored at the first node
 - The rear element is stored at the last node
- The space used is O(n) and each operation of the Queue ADT takes O(1) time

Elementary Data Structures



Elementary Data Structures

LIST ADT (§2.2.2)

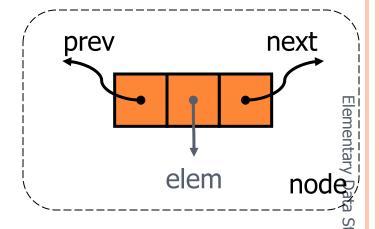
- The List ADT models a sequence of positions storing arbitrary objects
- It allows for insertion and removal in the "middle"
- Query methods:
 - isFirst(p), isLast(p)

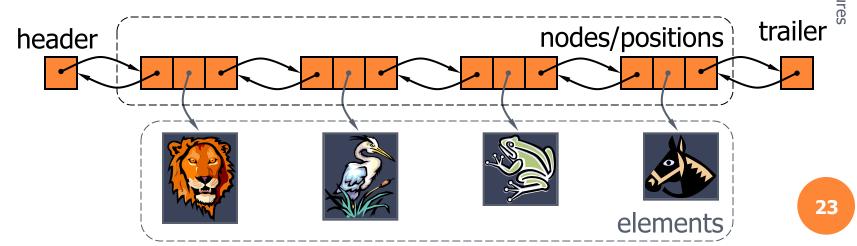
Accessor methods:

- first(), last()
- before(p), after(p)
- Update methods:
 - replaceElement(p, o), swapElements(p, q)
 - insertBefore(p, o), insertAfter(p, o),
 - insertFirst(o), insertLast(o)
 - remove(p)

DOUBLY LINKED LIST

- A doubly linked list provides a natural implementation of the List ADT
- Nodes implement Position and store:
 - element
 - link to the previous node
 - link to the next node
- Special trailer and header nodes





LIST ADT

O How about array-based List?

TREES (§2.3)

 In computer science, a tree is an abstract model of a hierarchical structure

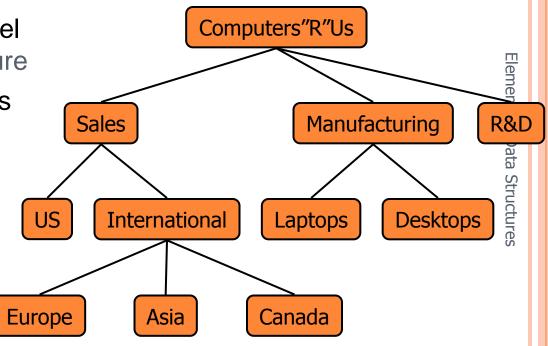
 A tree consists of nodes with a parent-child relation

o Applications:

Organization charts

File systems

 Programming environments



TREE TERMINOLOGY

Root: node without parent (A)

 Internal node: node with at least one child (A, B, C, F)

 External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)

 Ancestors of a node: parent, grandparent, grand-grandparent, etc.

 Depth of a node: number of ancestors

 Height of a tree: maximum depth of any node (3)

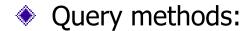
 Descendant of a node: child, grandchild, grand-grandchild, etc. Subtree: tree consisting of a node and its descendants Elementary Data subtree

26

Elementary Data Structures

TREE ADT (§2.3.1)

- Generic methods:
 - integer size()
 - boolean isEmpty()
 - objectIterator elements()
 - positionIterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)



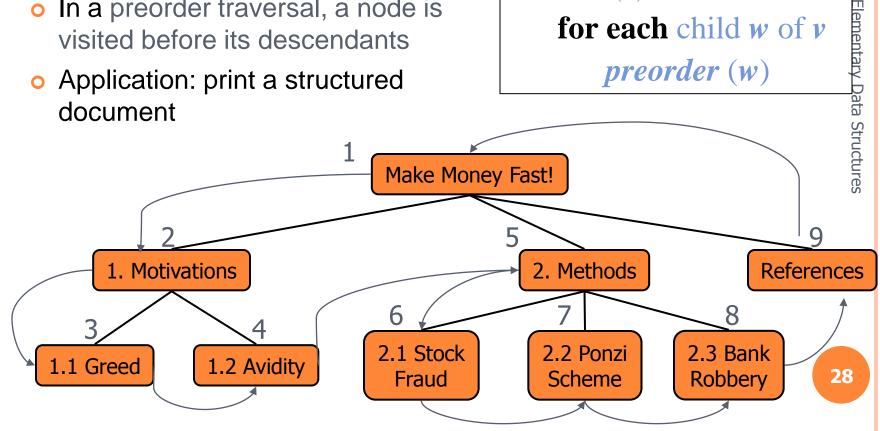
- boolean isInternal(p)
- boolean isExternal(p)
- boolean isRoot(p)
- Update methods:
 - swapElements(p, q)
 - object replaceElement(p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

Preorder Traversal (§2.3.2)

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm preOrder(v)visit(v)

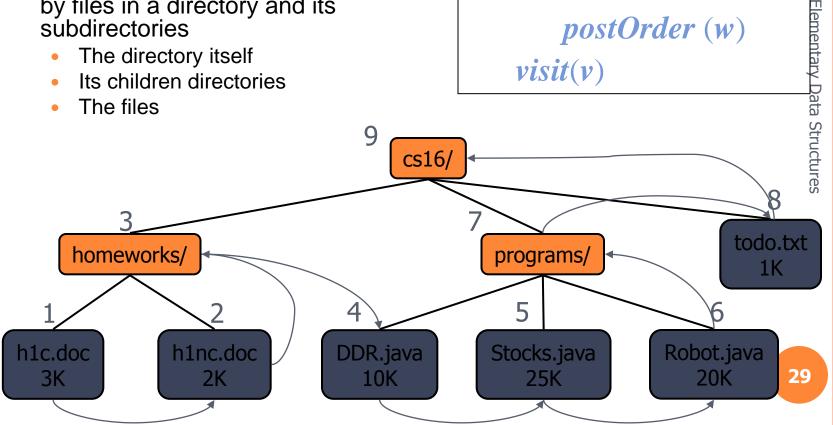
> for each child w of v preorder (w)



Postorder Traversal (§2.3.2)

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its súbdirectories
 - The directory itself
 - Its children directories
 - The files

Algorithm *postOrder*(v) for each child w of v postOrder (w) visit(v)

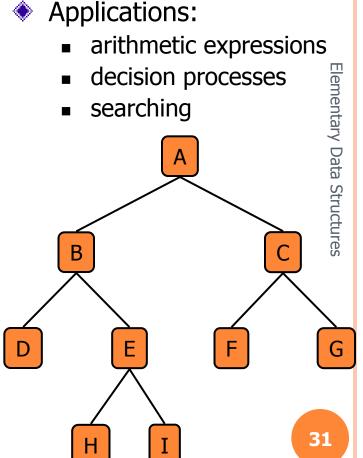


AMORTIZED ANALYSIS OF TREE TRAVERSAL

- Time taken in preorder or postorder traversal of an *n*-node tree is proportional to the sum, taken over each node v in the tree, of the time needed for the recursive call for v.
 - The call for v costs \$(c_v + 1), where c_v is the number of children of v
 - For the call for v, charge one cyber-dollar to v and charge one cyber-dollar to each child of v.
 - Each node (except the root) gets charged twice:
 once for its own call and once for its parent's call.
 - Therefore, traversal time is O(n).

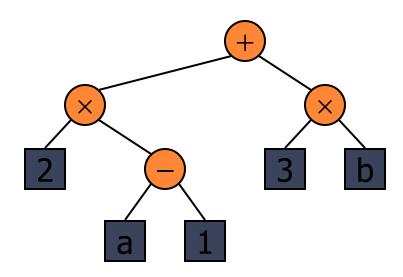
BINARY TREES $(\S 2.3.3)$

- A binary tree is a tree with the following properties:
 - Each internal node has at most two children (proper)
 - The children of a node are an ordered pair (left child comes before right child)
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree



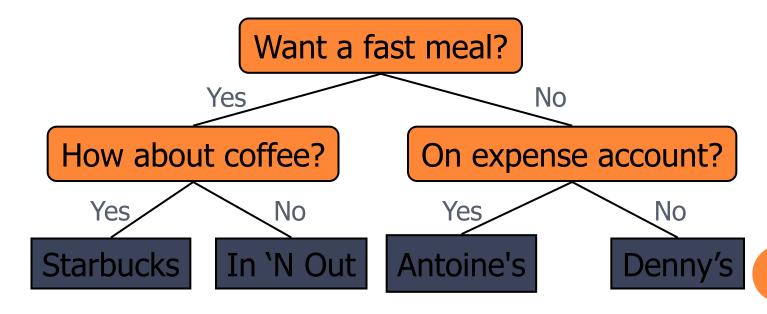
ARITHMETIC EXPRESSION TREE

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$



DECISION TREE

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision



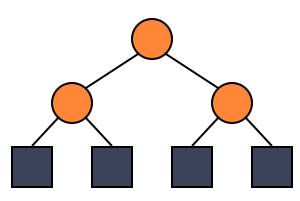
Properties:

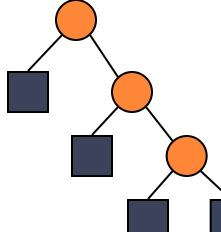
- e = i + 1
- n = 2e 1
- $h \leq i$
- $h \le (n-1)/2$
- $e \le 2^h$
- $h \ge \log_2 e$
- $h \ge \log_2 (n+1) 1$

PROPERTIES OF BINARY TREES

Notation

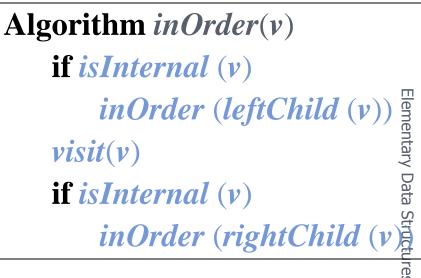
- *n* number of nodes
- e number of external nodes
- i number of internal nodes
- h height

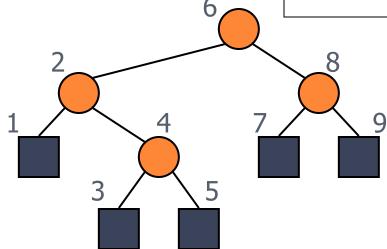




INORDER TRAVERSAL

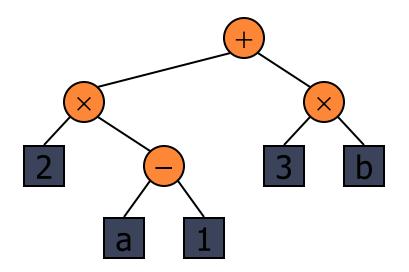
 In an inorder traversal a node is visited after its left subtree and before its right subtree





PRINTING ARITHMETIC EXPRESSIONS

- Specialization of an inorder traversal
 - print "(" before traversing left subtree
 - print operand or operator when visiting node
 - print ")" after traversing right subtree



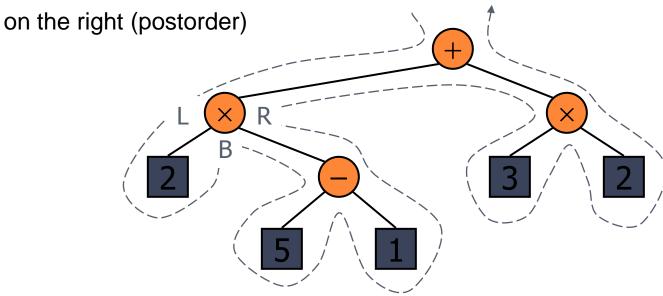
Algorithm printExpression(v) if isInternal (v) print("(") inOrder (leftChild (v)) print(v.element ()) if isInternal (v) inOrder (rightChild (v))

$$((2 \times (a - 1)) + (3 \times b))$$

print (")")

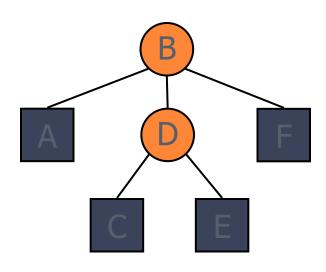
EULER TOUR TRAVERSAL

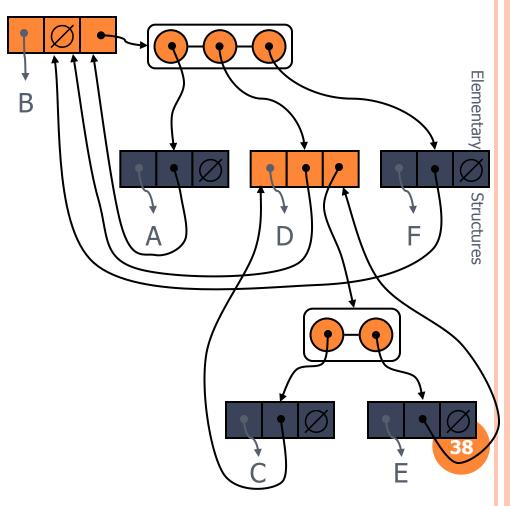
- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)



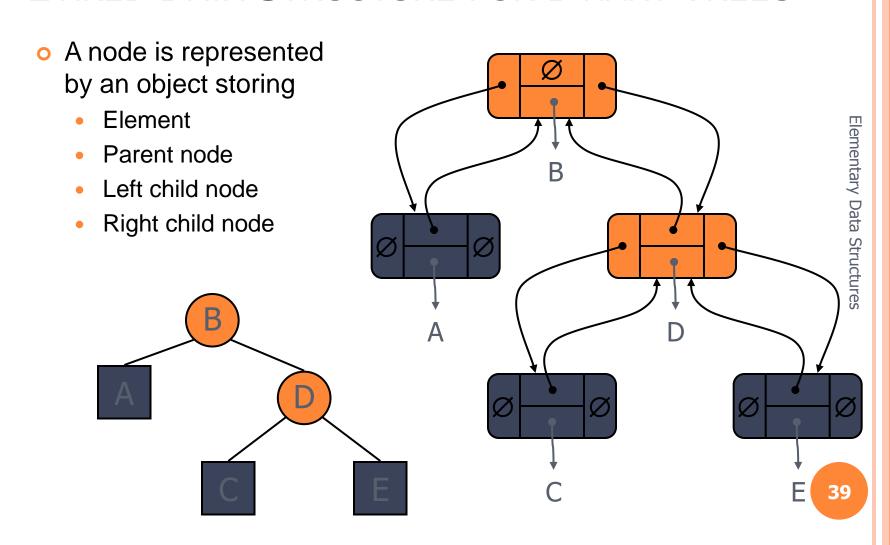
LINKED DATA STRUCTURE FOR REPRESENTING TREES (§2.3.4)

- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes



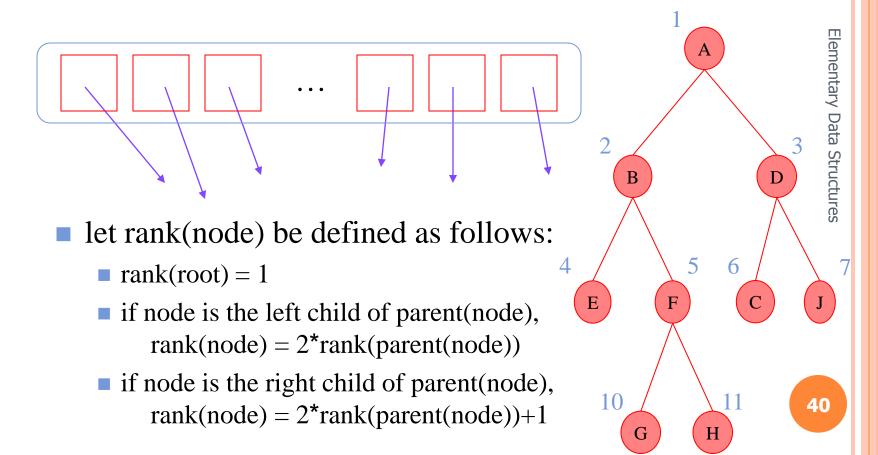


LINKED DATA STRUCTURE FOR BINARY TREES



ARRAY-BASED REPRESENTATION OF BINARY TREES

o nodes are stored in an array



Elementary Data Structures

ARRAY-BASED REPRESENTATION OF BINARY TREES

Space requirement

$$N = 2^{(n+1)/2}$$